ConaP

Some Web engineers
prefer a pencil and
paper storyboard of
major WebApp pages
(screens). Although
such storyboards con
be developed very
quickly, the navigation
flow is less obvious
than with an opere-
tional prototype.

CHAPTER 18 ANALYSIS FOR WEBAPPS 551

provide a rather one-dimensional view of the interaction. Sequence diagrams
present a second dimension that is more procedural (dynamic) in nature. State di-
agrams provide a third dimension that is more behavioral and contains informa-
tion about potential navigation pathways that is not provided by use-cases or the
sequence diagram. When all three dimensions are used, omissions or inconsis-
tencies that might escape discovery in one dimension become obvious when a
second (or third) dimension is examined. It is for this reason that large complex
WebApps can benefit from an interaction model that encompasses all three
representations.

User interface prototype. The layout of the user interface, the content it
presents, the interaction mechanisms it implements, and the overall aesthetic of
the user-WebApp connections have much to do with user satisfaction and the
overall acceptance of the WebApp. Although it can be argued that the creation of
a user interface prototype is a design activity, it is a good idea to perform it dur-
ing the creation of the analysis model. The sooner that a physical representation
of a user interface can be reviewed, the higher the likelihood that end-users will
get what they want. User interface analysis and design are discussed in detail in
Chapter 12.

Because WebApp development tools are plentiful, relatively inexpensive, and
functionally powerful, it is best to create the interface prototype using such tools. The
prototype should implement the major navigational links and represent the overall
screen layout in much the same way that it will be constructed.

L

The functional model addresses two processing elements of the WebApp, each rep-
resenting a different level of procedural abstraction: (1) user observable functional-
ity that is delivered by the WebApp to end-users, and (2) the operations contained
within analysis classes that implement behaviors associated with the class.

User-observable functionality encompasses any processing functions that are ini-
tiated directly by the user. For example, a financial Web site might implement a va-
riety of financial functions (e.g., a college tuition savings calculator or a retirement
savings calculator). These functions may actually be implemented using operations
within analysis classes, but from the point of view of the end-user, the function (more
correctly, the data provided by the function) is the visible outcome.

At a lower level of procedural abstraction, the analysis model describes the pro-
cessing to be performed by analysis class operations. These operations manipulate
class attributes and are involved as classes collaborate with one another to accom-
plish some required behavior.

Regardless of the level of procedural abstraction, the UML activity diagram can be
used to represent processing details. Figure 18.7 depicts an activity diagram for the

552 PART THREE APPLYING WEB ENGINEERING

Activity -
diagram for
computePrice()
operation

No components remain on BoMList Components remain on BoMList

Discount = O

e computePrice() operation that is part of the BillOfMaterials analysis class.® As we
ADVICE‘ noted in Chapter 8, the activity diagram is similar to the flowchart, illustrating the
Asan "”9’”_””"’94”"” processing flow and logical decisions with the flow. It should be noted that two ad-
con o wri a simple ditional operations are invoked within the procedural flow: calcShippingCost(), which

processing narrative or L) o

program design calculates the cost of shipping depending upon the shipping method chosen by the
longuage represent- customer, and determineDiscount(), which determines any special discounts for the
fion (Chapter 17). SafeHome components that were selected for purchase. The construction details in-

However, many people
prefer a graphical
representation.

dicating how these operations are invoked and the interface details for each opera-
tion are not considered until WebApp design commences.

6 Areview of the BillOfMaterials analysis class might determine that in the interest of cohesion, the
computePrice() operation might best be placed within an Invoice class. This suggestion has merit.
However, it remains within the BillOfMaterials analysis class for the purposes of this example.

ﬁnwc:’.

Although it's very
important to consider
oll configurations that
are likely o be used,
remember that @
WebApp must be engr-
neered fo serve its
endusers, not the idio-
syncrasies of a partic-
ulor browser.

CHAPTER 18 ANALYSIS FOR WEBAPPS 553

WebApps must be designed and implemented in a manner that accommodates a va-
riety of environments on both the server-side and the client-side.” The WebApp can
reside on a server that provides access via the Internet, an Intranet, or an Extranet.
Server hardware and operating system environment must be specified. In addition,
interoperability considerations on the server-side should be considered. If the
WebApp must access a large database or interoperate with corporate applications
that exist on the server side, appropriate interfaces, communication protocols, and
related collaborative information must be specified.

Client-side software provides the infrastructure that enables access to the
WebApp from the user’s location. In general, browser software is used to deliver the
WebApp content and functionality that is downloaded from the server. Although
standards do exist, each browser has its own peculiarities. For this reason, the
WebApp must be thoroughly tested within every browser configuration that is spec-
ified as part of the configuration model.

In some cases, the configuration model is nothing more than a list of server-side
and client-side attributes. However, for more complex WebApps, a variety of config-
uration complexities (e.g., distributing load among multiple servers, caching archi-
tectures, remote databases, multiple servers serving various objects on the same
Web page) may have an impact on analysis and design. The UML deployment dia-
gram (Chapter 10) can be used in situations in which complex configuration archi-
tectures must be considered.

The elements of the analysis model described in the preceding sections identify con-
tent and functional elements along with the manner in which they are used to im-
plement user interaction. As analysis evolves into design, these elements become
part of the WebApp architecture. In the context of Web applications, each architec-
tural element has the potential to be linked to all other architectural elements. But
as the number of links increases, navigational complexity throughout the WebApp
also increases. The question, then, is how to establish the appropriate links between
content objects and among the functions that provide user-required capabilities.

gion] i not only the octon of jumping from page to page, but the idea of maving through on nform

A. Relna oo

7 The server-side hosts the WebApp and all related system features that enable multiple users to gain
access to the WebApp via a network. The client-side provides a software environment (e.g.,
browsers) that enable end-users to interact with the WebApp on the user’s desktop.

554

% How do
“®' we assess
analysis model
elements to
understand the
relationships
between them?

PART THREE APPLYING WEB ENGINEERING

Relationship-navigation analysis (RNA) provides a series of analysis steps that strive
to identify relationships among the elements uncovered as part of the creation of the
analysis model.® Yoo and Bieber [YOOO00] describe RNA in the following manner:

RNA provides systems analysts with a systematic technique for determining the rela-
tionship structure of an application, helping them to discover all potentially useful re-
lationships in application domains. These later may be implemented as links. RNA also
helps determine appropriate navigational structures on top of these links. RNA en-

~ hances system developers’ understanding of application domains by broadening and

deepening their conceptual model of the domain. Developers can then enhance their
implementation by including additional links, metainformation, and navigation.

The RNA approach is organized into five steps:
e Stakeholder analysis—identifies the various user categories (as described in
Section 18.1) and establishes an appropriate stakeholder hierarchy.

e Element analysis—identifies the content objects and functional elements that
are of interest to end-users (as described in Sections 18.3 and 18.5).

e Relationship analysis—describes the relationships that exist among the
WebApp elements. '

e Navigation analysis—examines how users might access individual elements
or groups of elements.

e Evaluation analysis—considers pragmatic issues (e.g., cost/benefit) associ-
ated with implementing the relationships defined earlier.

The first two steps in the RNA approach have been discussed earlier in this chapter.
In the sections that follow, we consider methods for establishing the relationships
that exist among content objects and functions.

18.7.1 Relationship Analysis—Key Questions

Yoo and Bieder [YOOO0O] suggest a list of questions that a Web engineer or systems
analyst should ask about each element (content object or function) that has been
identified within the analysis model. The following list, adapted for WebApps, is rep-
resentative [YOOQO0]:

e Is the element a member of a broader category of elements?

e What attributes or parameters have been identified for the element?

¢ Does descriptive information about the element already exist? If so, where is it?

o Does the element appear in different locations within the WebApp? If so,
where?

e Is the element composed of other smaller elements? If so, what are they?

8 Itshould be noted that RNA can be applied to any information system and was originally developed

for hypermedia systems in general. It can, however, be adapted nicely for Web engineering.

% What

“%" questions
should be asked
to better
understand
navigation
requirements?

CHAPTER 18 ANALYSIS FOR WEBAPPS 555

o Is the element a member of a larger collection of elements? If so, what is it
and what is its structure?

e Is the element described by an analysis class?

e Are other elements similar to the element being considered? If so, is it
possible that they could be combined into one element?

o Is the element used in a specific ordering of other elements? Does its appear-
ance depend on other elements?

o Does another element always follow the appearance of the element being
considered?

e What pre- and post-conditions must be met for the element to be used?

¢ Do specific user categories use the element? Do different user categories use
the element differently? If so, how?

e Can the element be associated with a specific formulation goal or objective?
With a specific WebApp requirement?

e Does this element always appear at the same time as other elements appear?
If so, what are the other elements?

o Does this element always appear in the same place (e.g., same location of
the screen or page) as other elements? If so, what are the other elements?

The answers to these and other questions help the Web engineer to position the ele-
ment in question within the WebApp and to establish relationships among elements.

It is possible to develop a relationship taxonomy and to categorize each relation-
ship identified as a result of the questions noted. The interested reader should refer
to [YOOO00] for more detail.

18.7.2 Navigation Analysis

Once relationships have been developed among elements defined within the
analysis model, the Web engineer must consider the requirements that dictate how
each user category will navigate from one element (e.g., content object) to another.
The mechanics of navigation are defined as part of design. At this stage, develop-
ers should consider overall navigation requirements. The following questions
should be asked and answered:

o Should certain elements be easier to reach (require fewer navigation steps)
than others? What is the priority for presentation?

e Should certain elements be emphasized to force users to navigate in their
direction?

e How should navigation errors be handled?

¢ Should navigation to related groups of elements be given priority over navi-
gation to a specific element?

558

PART THREE APPLYING WEB ENGINEERING

Select a WebApp that you visit regularly from one of the following categories: (a) news or sports,
(b) entertainment, (c) e-commerce, (d) gaming, (e) computer-related, (f) a WebApp recom-
mended by your instructor. Perform the activities noted in Problems 18.6 through 18.12:

18.6. Develop one or more use-cases that describe specific user behavior for the WebApp.

18.7. Select a content object or function that is part of the WebApp architecture and answer
the relationship-navigation questions listed in Section 18.7.1.

18.8. Develop a UML sequence diagram and a UML state diagram that describes a specific in-
teraction within the WebApp.

18.9. Consider the existing WebApp interface. Prototype a change to the interface that you be-
lieve will improve it. :

18.10. Considering the existing WebApp, answer the relationship-navigation questions listed
in Section 18.7.2.

18.11. Represent a partial content hierarchy and define at least three analysis classes for the
WebApp.

18.12. Select a user observable function provided by the WebApp and model it using a UML
activity diagram.

Many books dedicated to analysis modeling for conventional software—with particular empha-
sis on use-cases and UML notation——contain much useful information that can be readily
adapted by Web engineers. Use-cases form the foundation of analysis modeling for WebApps.
Books by Kulak and his colleagues (Use Cases: Requirements in Context, second edition, Addi-
son-Wesley, 2004), Bittner and Spence (Use Case Modeling, Addison-Wesley, 2002), Cockburn
(Writing Effective Use Cases, Addison-Wesley, 2001), Armour and Miller {(Advanced Use-Case Mod-
eling: Software Systems, Addison-Wesley, 2000), Rosenberg and Scott (Use Case Driven Object
Modeling with UML: A Practical Approach, Addison-Wesley, 1999), and Schneider, Winters, and
Jacobson (Applying Use Cases: A Practical Guide, Addison-Wesley, 1998) provide worthwhile
guidance in the creation and use of this important requirements representation mechanism.
Worthwhile discussions of UML have been written by Arlow and Neustadt (UML and the Unified
Process, Addison-Wesley, 2002), Schmuller (Teach Yourself UML, Sams Publishing, 2002), Booch
and his colleagues (The UML User Guide, Addison-Wesley, 1998), and Rumbaugh and his col-
leagues (The Unified Modeling Language Reference Manual, Addison-Wesley, 1998).

Books dedicated to Web site design often contain one or two chapters that discuss analysis is-
sues (although these are often cursory discussions). The following books contain one or more as-
pects of analysis within the context of Web engineering: Van Duyne and his colleagues (The Design
of Sites, Addison-Wesley, 2002), Rosenfeld and Morville {Information Architecture for the World Wide
Web, O'Reilly & Associates, 2002), Wodtke (Information Architecture, New Riders Publishing, 2002),
Garrett (The Elements of User Experience: User Centered Design for the Web, New Riders Publishing,
2002), Niederst (Web Design in a Nutshell, O'Reilly & Associates, 2001), Lowe and Hall (Hypertext
and the Web: An Engineering Approach, Wiley, 1999), and Powell (Web Site Engineering, Prentice-
Hall, 1998) provide reasonably complete coverage. Norris, West, and Watson (Media Engineering:
A Guide to Developing Information Products, Wiley, 1997), Navarro and Khan (Effective Web Design:
Master the Essentials, Sybex, 1998), and Fleming and Koman (Web Navigation: Designing the User
Experience, O'Reilly & Associates, 1998) provide additional guidance for analysis and design.

A wide variety of information sources on analysis modeling for Web engineering is available
on the Internet. An up-to-date list of World Wide Web references can be found under “software
engineering resources” at the SEPA Web site:
http://www.mhhe.com/pressman.

Key
CONCEPTS

aesthetic design
architecture desige

component-level
design

content architecture
content desiga
interface design
MVC architecture
navigation design
00HDM

metrics

pattems

qulity attributes

DESIGN FOR
WEeBAPPS

are essentially two basic approaches to design: the artistic ideal of expressing

yourself and the engineering ideal of solving a problem for a customer.” Dur-
ing the first decade of Web development, the artistic idea was the approach that
many developers chose. Design occurred in an ad hoc manner and was usually
conducted as HTML was generated. Design evolved out of an artistic vision that
itself evolved as WebApp construction occurred.

Even today, the most “extreme” proponents of agile software development
(Chapter 4) use Web applications as poster children for “limited design.” They
argue that WebApp immediacy and volatility mitigate against formal design,
that design evolves as an application is built (coded), and that relatively little
time should be spent on creating a detailed design model. This argument has
merit, but only for relatively simple WebApps. When content and function are
complex; when the size of the WebApp encompasses hundreds of content ob-
jects, functions, and analysis classes; when the success of the WebApp will
have a direct impact on the success of the business, design cannot and should
not be taken lightly.

This reality leads us to Nielsen’s second approach—“the engineering ideal of
solving a problem for a customer.” Web engineering adopts this philosophy, and
a more rigorous approach to WebApp design enables developers to achieve it.

I n his authoritative book on Web design, Jakob Nielsen [NIEOQ] states: “There

W ’Web mg neers, graphic design-
‘other

demgn model sh l" :'

struction begins, ,

recognizes that the design wilkeve nore

is learned about stokeholder mqﬁfrémm m : w
the WebApp is built. - ‘

PART THREE APPLYING WEB ENGINEERING

When design is applied within the context of Web engineering, both generic and spe-
cific issues must be considered. From a generic viewpoint, design results in a model
that guides the construction of the WebApp. The design model, regardless of its form,
should contain enough information to reflect how stakeholder requirements (defined
in an analysis model) are to be translated into content and executable code. But de-
sign must also be specific. It must address key attributes of a WebApp in a manner
that enables a Web engineer to build and test effectively.

19.1.1 Design and WebApp Quality

In earlier chapters, we noted that design is the engineering activity that leads to a
high-quality product. This leads us to a recurring question that is encountered in all
engineering disciplines: What is quality? In this section we examine the answer
within the context of Web engineering.

Every person who has surfed the Web or used a corporate Intranet has an opinion
about what makes a “good” WebApp. Individual viewpoints vary widely. Some users
enjoy flashy graphics, others want simple text. Some demand copious information,
others desire an abbreviated presentation. Some like sophisticated analytical tools or
database access, others like to keep it simple. In fact, the user’s perception of “good-
ness” (and the resultant acceptance or rejection of the WebApp as a consequence)
might be more important that any technical discussion of WebApp quality.

But how is WebApp quality perceived? What attributes must be exhibited to
achieve goodness in the eyes of end-users and at the same time exhibit the techni-
cal characteristics of quality that will enable a Web engineer to correct, adapt, en-
hance, and support the application over the long term?

